
IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

486

Adapting the Sobel Edge Detector and Canny

Edge Extractor for iPhone 3GS architecture

Marcelo G. Roque

Computer Science Department

Universidade Federal Fluminense

R. Passo da Pátria, 156, Bloco E, Medialab

Email: dsmarcelo@live.com

Anselmo Montenegro

Computer Science Department

Universidade Federal Fluminense

R. Passo da Pátria, 156, Bloco E

Email: anselmo@ic.uff.br

Rafael M. Musmanno

Computer Science Department

Universidade Federal Fluminense

R. Passo da Pátria, 156, Bloco E, Medialab

Email: rafa.musmanno@gmail.com

Esteban W. G. Clua

Computer Science Department

Universidade Federal Fluminense

R. Passo da Pátria, 156, Bloco E, room 304

Phone: (55 21) 26295646 Email: esteban@ic.uff.br

Abstract—This paper describes the adaptation and

optimization of two edge detector algorithms used as

low-level operations in the development of augmented

reality applications for the iPhone 3GS platform. We

have investigated the Sobel and Canny edge detectors

and proposed robust solutions for the edge detection

problem that can be efficiently used in low processing

power devices. We also present here an analysis of the

results obtained in the considered platform and which of

the optimized edge detectors produced the best overall

performance.

Keywords: Sobel Edge Detector, Canny Edge Extractor,

iPhone Edge Detectors, Augmented Reality on iPhones.

I. INTRODUCTION

This work presents the adaptation and optimization
of classical edge detectors for mobile augmented reality
applications, where few computational resources are
available.

Augmented reality technology has been used and
explored in several contexts and areas, such as
education, research, business, and advertising, among
others. Nevertheless, a large set of potential applications
have been hindered by the fact that the required
algorithms are too computationally expensive to be
executed on mobile phones and other types of low
processing power hardware.

This work presents an approach for edge detection
that has been successfully applied to the construction of
an augmented reality application in the iPhone 3GS
platform.

The full application consists in adding synthetic
graphical objects to real world scenes that are captured in
real-time by an iPhone 3GS camera. The augmented
reality application that was developed is loosely based
on the work of Michel Alain [5] [6] and was
implemented using xCode.

The process begins with the image capture. After
this, the captured image passes through a set of image
processing stages in order to locate a calibration pattern,
added to the scene, which is used to estimate the
camera’s intrinsic and extrinsic parameters, by using a
method based on Tsai’s method [11].

Once calibration is carried out, the synthetic objects
are inserted right above the calibration pattern in the real
scene in the position and orientation of the device’s
camera.

One of the main points of this work is that camera
calibration is a computationally intensive operation
itself. Besides, it requires the detection of the image
coordinates of a set of feature points in the calibration
pattern, whose world space coordinates are previously
measured.

The detection of such feature points rely heavily on
efficient and robust edge detectors. This has motivated
us to search for efficient solutions for edge detection that
do not introduce any significant overhead in the overall
process of pattern recognition, camera calibration and
scene rendering.

This paper is organized as follows: in section II, we
describe some works related to the development of
augmented reality applications in iPhones; in Section III,
we describe the edge detectors that were analyzed and
considered in our investigation and point out its main
properties and drawbacks; in section IV, we show how
the considered edge detectors were adapted and
optimized to the iPhone 3GS platform; results obtained
with the adapted edge detectors implemented in the
iPhone 3GS are presented in section V and, finally, in
section VI, a conclusion and final considerations are
presented.

II. RELATED WORK

Edge detection is a low-level image processing
operation that is part of a large number of augmented
reality applications. Surprisingly, image processing
based approaches have not been the main choice when

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

487

one has to develop augmented reality applications on the
Apple’s iPhone platform. Since Apple only authorizes
the implementation of augmented reality in the iPhone
platform by using image overlays, most of its augmented
reality applications use the integrated GPS technology,
instead of image processing and pattern recognition
methods. However, there are a few labs and research
groups that are working with camera hacks to achieve
augmented reality based on visual techniques.

The Augmented Environments Lab [3] [4] (AEL) has
been working with augmented reality using QR patterns
[10] recognition and AR Toolkit [1] to simulate a digital
pet on the iPhone that responds to user interaction.

The Simple-Image-Processing [8] is an Objective-C
library developed by Chris Greening, for an iPhone
Sudoku application that photographs a Sudoku puzzle
from a newspaper, and provides the correct answers, by
processing the detected edges.

Similarly to [3] and [4], the main motivation of this
work was to build a generic augmented reality
application using image processing and computer vision
methods. The software development requirements has
led us to consider more carefully the basic image
processing steps, in particular, the edge detection step. In
the next sections, we review two of the most used edge
detection methods, the Sobel and Canny edge detectors,
and show how we have adapted and optimized them so
that they could be used in mobile platforms.

III. EDGE DETECTION

Edge detection is one of the first steps in many
pattern recognition and computer vision pipelines. It is
an image processing technique that aims at the
identification of sharp changes or discontinuities in the
image brightness within neighbor regions on the image
plane. The process itself can be done by using
approximated derivatives usually implemented as digital
filters.

 Before performing edge detection some artifacts
introduced in the input images by the capturing devices
must be removed or at least reduced.

These artifacts include radial distortion, due to the
characteristics of lenses of the cameras, illumination
distortion, due to the ambient light frequency variation,
shadows and noise introduced by the CCD or CMOS
sensors.

In our project we considered only the radial
distortion and noise problems due to sensors.

A. Elliminating radial distortion

 Radial distortion is one of the main causes of
problem in the camera calibration step. Hence, we
considered investigating the effects of such problem
considering the augmented reality system we
implemented.

Fortunately, an intensive set of experiments has
shown that the iPhone 3GS introduces minor radial
distortion and due to the scope of this project, and the
need to reduce processing time, we decided that the use
radial distortion correction methods was not necessary.

B. Elliminating and attenuating image noise

Since the device generates images with random noise
which must be eliminated or attenuated, the use of noise
attenuating filters was required.

In this work, we started using a Gaussian Blur
filtering with a 5x5 mask, in order to obtain the
smoothing of the grayscale image generated from the
colored input image.

Due to the device’s memory and processing
limitations, this method had to be optimized, so the filter
was implemented as a separable Gaussian Filtering. A
more detailed discussion will be presented in the next
sections.

C. Steps of edge detection

According to Trucco and Verri [7], there are three
steps required to perform edge detection. These steps
are: noise smoothing, edge enhancement and edge
localization. Noise smoothing, also known as noise
reduction, aims at suppressing noise as much as possible,
without destroying the edges of the image. On the other
hand, edge enhancement tries to produce output images
that have large intensity values at edge pixels and low
intensity values elsewhere, so the edges can be easily
located. The edge localization decides which of the local
maxima in the filter’s output are edges and which are
just caused by noise.

D. Sobel edge detector

This method consists of a discrete differentiation
operator, which computes an approximation of the
gradient of the image intensity function. At each point in
the image, the result of the Sobel operator is either the
corresponding gradient vector or the norm of this vector.
The Sobel operator is based on convolving the image
with a small, separable, and integer valued filter in
horizontal and vertical directions.

The inputs for the Sobel edge detector algorithm are
formed by an image I and a threshold r. After the
application of noise smoothing filters, the corresponding
linear filter is applied to the new smoothed image Is, by
using the masks shown in equation 1, producing two new
images I1 and I2.

















−

−

−















 −−−

101

202

101

,

121

000

121 (Eq 1)

After this, the magnitude of the intensity gradient is
estimated at each pixel I(i,j), producing an image of
gradient magnitudes as shown by equation 2

2

2

2

1),(),(),(jiIjiIjies += (Eq 2)

Finally, all pixels es(i, j) such that es (i, j) > r, are
marked as edges.

E. Canny edge extractor

The Canny Edge Extraction Algorithm is an optimal
edge detector having good localization property, such
that the marked edges are as close as possible to the
edges in the real image and minimal response, so that

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

488

one image edge should only be marked once, and only
when there is strong evidence that it is really an
important feature.

Given an image I, the first step on the algorithm is
the Canny Enhancer Algorithm, which performs noise
removal, gradient detection and edge strength analysis.

First of all, it is necessary to apply a Gaussian
Smoothing to I, expressed as the convolution J = I*g of I
with a Gaussian kernel g.

After this, the following steps must be done for each
pixel (i, j) in J:

a) Compute the gradient components Jx and Jy.

b) Estimate the edge strength es (equation 3).

22),(),(),(jiJjiJjie yxs += (Eq 3)

c) Estimate the orientation of the edge normal eo

(equation 4)









=

x

y

o
J

J
ajie tan),((Eq 4)

The output is a strength image Es, formed by the
values es(i, j) and an orientation image Eo, formed by the
values of eo(i, j).

After that, the Non Maxima Suppression Algorithm is
applied to the strength image, considering the four
directions identified by 0°, 45°, 90° and 135°, in order to
remove non maxima points in the Es image and produce
a new image In.

For each pixel (i,j) in Es it is necessary to find the
direction dk, which better approximates the direction eo(i,
j), which is the edge normal. If es(i, j) is smaller than at
least one of its two neighbors along dk, then In(i, j) = 0
otherwise In(i,j) = es(i,j). The output image In(i,j)
consists of points belonging to thinned edges (i.e. Es
after suppressing non maxima points).

The image produced by the previous step still
contains local maxima originated by noise. In order to
get rid of such local maxima, the next and last step of the
process consists in using the Hysteresis Threshold
Algorithm, which uses a minimum and maximum
thresholding values tl and th.

First, the next unvisited edge pixel, In(i, j), such that
In(i, j) > th is located. In the sequel, the algorithm starts
from In(i, j), following the connected chains of local
maxima in both directions perpendicular to the edge
normal, as long as In(i,j) > tl.

In the next step, all visited points are marked and a
list of the locations of all points in the connected contour
found is saved. The output is a set of lists, each one
describing the position of a connected contour in the
image, as well as the strength and the orientation images,
describing the properties of the edge points.

IV. EDGE DETECTORS ON IPHONE

In order to implement both algorithms in the iPhone

some optimization strategies had to be considered.

Below we describe each of the optimization strategies

that we have used so that the algorithms presented

acceptable performances.

A. The Sobel edge detector iPhone approach

The Sobel algorithm itself is very simple and not
much could be done to optimize its performance.
Nevertheless, the Gaussian smoothing step was critical
and its optimization led to considerable increases in
performance.

We changed the 5x5 Gaussian mask filtering to a
separable Gaussian filtering. By doing this, the number
of elementary operations per pixel was reduced from 25
to 6, and the processing time was reduced from 225
average milliseconds, for a 320x480 image, to 102
average milliseconds.

The Sobel algorithm combined with the separated
Gaussian filter produced excellent results for the
localization of the pattern features when using a
threshold equal to 240 (Figure 3(a)). The main problem
is that many edges were discarded what could be a
problem for other applications.

B. The Canny edge extractor iPhone implementation

Due to the high cost of the Canny edge detector, the
first step towards the optimization process was to apply a
separable Gaussian filter [9], instead of a 5x5 mask to
remove image noises, as we did with the detector based
on the Sobel masks.

By doing this, the response time decreased, but not
enough to be considered as a feasible solution to be used
in an interactive application.

Figures 1(a) and 1(b) show a comparison of the
results produced, respectively, by the Sobel and Canny
Edge Extractor algorithm running on the iPhone. The
images were resized after processing so they could fit the
devices screen.

(a) Sobel edge detector on iPhone

using a threshold value equal to

240 in a scale from 0 to 255.

(a)Canny edge Extractor on

iPhone using 0.3 as minimum and

0.7 as maximum threshold value.

Figure 1 – Image filter results.

In order to improve the performance of the Canny
Edge Extractor algorithm, its convolution matrices and
the separable Gaussian filter were combined into one
kernel. The results of this attempt yielded a decrease of
approximately 75% on the response time for a 320x480
pixels image (Figure 2).

IWSSIP 2010 - 17th International Conference on Systems, Signals and Image Processing

489

0
2000
4000
6000
8000

10000

T
im

e
 i

n
 m

il
is

e
co

n
d

s
Canny with Gaussian Mask 5x5 vs

Canny with Merged Matrices

Canny with

Gaussian Mask 5x5

Canny with

Merged Separable
Figure 2 – Speed comparison between the noise smoothing and Canny

edge extractor execution, versus the Canny edge extractor with merged

matrices.

The results were excellent in terms of edge
extraction. All edges were captured perfectly,
nevertheless, there was still an excess of unwanted
edges. The unwanted edges made difficult the calibration
pattern recognition.

V. RESULTS

The charts in Figure 3 bellow show a comparison of
the results in terms of the response times of the
implemented solutions for the edge detectors.

0

1000

2000

3000

4000

389x293 320x480 600x800

T
im

e
 in

 m
il

is
e

co
n

d
s

Image Size (widthxheight)

Canny vs Sobel Speed Comparison

Canny

Sobel

Figure 3 – Comparison of the time responses between the Canny edge

extractor and the Sobel edge detector.

We tried to calibrate the lower and higher thresholds
of the Canny edge detector, in order to eliminate
undesirable edges that were hindering a perfect detection
of the calibration pattern. Nevertheless, we could not
achieve a robust and stable configuration.

After analyzing the results, we decided to base our
edge detection solution, for the iPhone platform, on the
Sobel method due the obtained performance and the
qualitative results.

The overall results on the augmented reality project,
using the Sobel edge detector can be seen on Figure 4
below.

Figure 4 – iPhone augmented reality.

VI. CONCLUSIONS

This work presented optimization strategies for edge
detectors that enabled us to build an augmented reality
application on the iPhone.

The lack of documentation for the iPhone imaging
APIs was one of the biggest problems while trying to
develop efficient filters and edge detectors.

Besides the many problems we have encountered
during the project, we have achieved our purposes by
developing an augmented reality application running on
the iPhone that uses computationally expensive
computer vision methods such as edge detection and
camera calibration.

The experiments showed that edge detection was the
major bottleneck of the application and the optimization
strategies were fundamental for the success of the
implementation.

Although the Canny Extractor was discarded for the
augmented reality project its use should be considered
for other applications which require more edges than the
set produced by the Sobel detector implementation.

VII. ACKNOWLEDGMENTS

The authors would like to thank Erick Passos,
Marcos Ramos, Eduardo Régis and Fernando Ribeiro.
Anselmo Montenegro is grateful for the fund from
FAPERJ under process number E-26/171.208/2006.

REFERENCES

[1] ARToolKit, http://www.hitl.washington.edu/artoolkit.

[2] J. Canny, A Computationl Approach to Edge Detection, IEEE
Transactions on pattern analysis and machine intelligence., vol.
PAMI-8, no 6, (1986).

[3] Augmented Environments Lab, http://www.Augmented
environments.org /lab/.

[4] Arf, an Augmented Reality Virtual Pet on iPhone, Augmented
Enviroments Lab, http://www.augmentedenvironments.org/lab/
2008/11/28/arf-iphone-peek/, (2008).

[5] Computer Vision and Augmented Reality, Gattass M., website,
http://www.tecgraf.puc-rio.br/~mgattass/ra/ra.html (2009)

[6] Augmented and Cooperative Virtual Reality, M. Alain,
nausabin, http://www.tecgraf.puc-rio.br/~mgattass/ra/trb03/
MichelAlain/ (2003)

[7] E. Trucco & A. Verri, “Introductory Techniques for 3D
Computer Vision”, Prentice Hall, (1998).

[8] Simple Image Processing, http://code.google.com/p/simple-
ihpone-image-processing/

[9] L. G. Shapiro & G. C. Stockman, “Computer Vision”, page
137~150. Prentice Hall, (2001).

[10] QR Code, http://en.wikipedia.org/wiki/QR_Code.

[11] R.Y.Tsai, An Efficient and Accurate Camera Callibration (1986)

